1/14/25, 6:46 PM Spring Boot Solutions Architecture

1. Event-Driven Architecture for Order Management

e Objective: Design an order processing system for an e-commerce platform to handle high concurrency and real-time updates.

e Solution:

Spring Boot Microservices: Modularized into services such as order Service, Inventory Service, and Payment Service .

Kafka: Used as an event bus to decouple services and enable asynchronous communication. Each service produces and
consumes relevant events (order-created , inventory-checked, payment-processed).

SQL (MySQLl): Used for relational data such as order details and transaction logs to ensure ACID compliance.
NoSQL (MongoDB): Used for product catalog storage with dynamic schemas for product metadata.
Outcome: Achieved scalability to handle 10,000+ orders per second with reduced latency by 40%.

2. Real-Time Fraud Detection System

e Objective: Create a real-time fraud detection system for financial transactions.

e Solution:

Spring Boot Microservices: Transaction Service for receiving and processing transactions, Fraud Detection Service for
anomaly detection, and Notification Service for alerts.

Kafka Streams: Processed transactions in real-time using aggregation and pattern-matching techniques to detect suspicious
activity.

SQL (PostgreSQL): Used to store user profiles, historical transaction data, and fraud cases.
NoSQL (Redis): Leveraged for caching frequently accessed user and transaction data to enhance performance.

Outcome: Reduced fraud detection time from minutes to seconds, improving fraud prevention effectiveness by 25%.

https://chatgpt.com/c/677bb62c-e2ec-8005-80d4-8c468522fb6c

13

1/14/25, 6:46 PM Spring Boot Solutions Architecture
3. Personalized Recommendation System

e Objective: Build a recommendation engine for a video streaming platform.

e Solution:

e Spring Boot Microservices: User Activity Service for collecting user interactions, Recommendation Engine for generating
suggestions, and Content Delivery Service for streaming.

e Kafka: Streamed user activity data (play, pause, like, share) to the recommendation engine in real time.
e NoSQL (Cassandra): Used for storing user activity logs and watch history at scale.
e SQL (PostgreSQL): Used for maintaining user profiles and subscription data.

e Outcome: Achieved 20% higher user engagement and 15% improvement in content consumption metrics.

4. Centralized Logging and Monitoring System

e Objective: Implement a centralized logging and monitoring system to manage distributed microservices.

e Solution:

e Spring Boot Microservices: Integrated centralized logging frameworks with all services using SLF4J and Logback.
e Kafka: Used to aggregate logs from multiple microservices for real-time log streaming.
e SQL (Elasticsearch): Leveraged for indexing and querying logs to enable detailed search capabilities.

e Outcome: Reduced MTTR (Mean Time to Recovery) by 30% and improved operational efficiency.

5. Hybrid Data Management System for Customer 360

e Objective: Create a 360-degree view of customers for a retail business.

https://chatgpt.com/c/677bb62c-e2ec-8005-80d4-8c468522fb6c

2/3

1/14/25, 6:46 PM Spring Boot Solutions Architecture

e Solution:

Spring Boot Microservices: Customer Profile Service, Purchase History Service, and Loyalty Points Service as separate
modules.

Kafka: Unified customer events (profile-updated , order-placed, points-redeemed) into a single customer activity stream.
SQL (Oracle): Used for structured data like customer profile and order history.
NoSQL (Neod4j): Used for creating a relationship graph of customers, products, and locations for insights.

Outcome: Delivered a holistic view of TM+ customers, enhancing targeted marketing campaigns and improving customer
retention by 15%.

6. Scalable Messaging Platform

e Objective: Design a messaging platform for real-time communication and chat history management.

e Solution:

Spring Boot Microservices: Messaging Service, User Management Service, and Notification Service .
Kafka: Used for real-time message delivery and maintaining chat event streams.

SQL (PostgreSQL): Stored structured chat metadata (e.g., user-to-user relationships).

NoSQL (DynamoDB): Stored unstructured chat content and history for high availability.

Outcome: Scaled to support 50K concurrent users with 99.99% uptime.

https://chatgpt.com/c/677bb62c-e2ec-8005-80d4-8c468522fb6c

3/3

